Market Overview
The Global
AI-driven Knowledge Management System market is predicted to value at
USD 9.6 billion in 2025 and is expected to grow to
USD 251.2 billion by 2034, registering a compound annual
growth rate (CAGR) of 43.7% from 2025 to 2034.
AI-driven Knowledge Management Systems (KMS) are transforming how organizations manage, store, and retrieve information. These systems use artificial intelligence to automate knowledge capture, improve search efficiency, and enhance decision-making processes. The increasing volume of data generated across industries is a major driving force behind AI-driven KMS. Traditional knowledge management methods struggle to handle unstructured data, making AI-powered solutions essential. Businesses seek automation to streamline workflows, improve collaboration, and enhance customer experience, fueling demand for AI-driven KMS.

Organizations across healthcare, finance, IT, and customer support require efficient knowledge management to stay competitive. AI-driven KMS reduces redundancy, improves response times, and ensures knowledge is easily accessible. With remote work becoming more prevalent, companies need AI-powered solutions to maintain seamless communication and information sharing.
The AI-driven KMS market is expected to grow significantly, with advancements in natural language processing and machine learning. Integration with chatbots, voice assistants, and predictive analytics will further enhance knowledge accessibility. As industries increasingly adopt AI, the demand for intelligent KMS will continue to rise, ensuring a promising future for this market.
The US AI-driven Knowledge Management System Market
The
US AI-driven Knowledge Management System market is projected to be
valued at USD 3.1 billion in 2025. It is expected to witness subsequent growth in the upcoming period as it holds
USD 68.7 billion in 2034 at a
CAGR of 40.9%.
The U.S. AI-based Knowledge Management System market is driven by a boost in demand for automation and efficient management of data across industries. Organizations need AI-based systems to enhance decision-making, process optimization, and customer experience. Advances in natural language processing (NLP) and machine learning enable more intuitive knowledge retrieval and personalized insights. Remote working and digital transformation drive adoption further, with firms concentrating on knowledge-sharing platforms to optimize productivity and collaboration and reduce information silos.
Key trends in the U.S. AI-based Knowledge Management System market are incorporating generative AI for more contextual and adaptive knowledge delivery. AI chatbots and digital assistants are moving to center stage in self-service knowledge systems. AI is being utilized to automate content classification, semantic search, and recommendation systems by firms. AI ethics and data privacy legislation are being given greater priority in system design. Cloud-based AI knowledge management systems are being increasingly favored, enabling enterprise-wide deployment in a scalable and secure way.
AI-driven Knowledge Management System Market: Key Takeaways
- Market Growth: The Global AI-driven Knowledge Management System Market is anticipated to expand by USD 237.8 billion, achieving a CAGR of 43.7% from 2025 to 2034.
- Component Analysis: Solutions are likely to dominate the global network forensics market with a revenue share of 65.2% by the end of 2025.
- Deployment Mode Analysis: The On-premise model is likely to lead in the AI-based Knowledge Management System market with a revenue share of 60.2% by the end of 2025.
- Enterprise Size Analysis: Large enterprises are likely to dominate in the AI-driven knowledge management system market with a revenue share of 69.2% in 2025
- Technology Analysis: Natural Language Processing (NLP) is projected to prevail with the highest revenue share of 38.3% by the end of 2025.
- Application Analysis: Enterprise Knowledge Management is expected to dominate the AI-Driven Knowledge Management System Market with a revenue share of 28.4% by the end of 2025.
- End User Analysis: It is estimated that BFSI is likely to lead with a revenue share of 26.7% in the AI-powered Knowledge Management System (KMS) market by the end of 2025.
- Regional Analysis: North America is predicted to lead the global AI-driven Knowledge Management System Market with a revenue share of 38.9% in 2025.
- Prominent Players: Some of the major key players in the Global AI-driven Knowledge Management Systems Market are Microsoft Corporation, International Business Machines Corporation (IBM), Amazon Web Services, Inc., and many others.
AI-driven Knowledge Management System Market: Use Cases
- Customer Support and Self-Service Portals: An AI-powered Knowledge Management System can power chatbots and virtual assistants that offer instantaneous answers to customer inquiries. By studying past interactions and tapping a dynamic knowledge base, AI increases self-service options while shortening response times and improving customer satisfaction.
- Enterprise Knowledge Sharing & Collaboration: Organizations leverage artificial intelligence knowledge management systems (KMSs) to centralize institutional knowledge for easy searchability by employees. AI helps recommend relevant documents, insights, or experts within an organization for improved collaboration and decision-making processes.
- Regulatory Compliance & Risk Management: Compliance, Risk & Organizational AI-driven KMS solutions help businesses remain compliant with industry regulations by continuously tracking, updating, and organizing compliance documents. AI can also alert employees when policies have changed while helping employees understand legal & regulatory obligations.
- Accelerated Research and Development (R&D): In industries like pharmaceuticals, AI-powered KMS can analyze vast datasets, research papers, and patents to spot trends, foster innovation and accelerate product development. AI can summarize complex studies while simultaneously discovering patterns or suggesting areas worthy of further exploration.
AI-driven Knowledge Management System Market: Stats & Facts
- Growing Enterprise Adoption: By 2026, 80% of enterprises will be using GenAI APIs, applications, and models in production, a massive increase from under 5% in 2023. This demonstrates the rapid adoption of AI-driven knowledge management.
- Market Expansion: The AI market is projected to grow from $200 billion in 2023 to over $1.8 trillion by 2030. The potential value of AI and analytics across industries is estimated between $9.5 trillion and $15.4 trillion, showcasing its economic significance.
- Enhanced Work Efficiency: Generative AI is improving productivity by up to 30% in tasks such as code generation, documentation, and testing. This results in faster development cycles and optimized workflows across industries.
- Superior Performance in Coding: In a Python coding contest, non-technical participants using GenAI achieved 86% of the benchmark set by data scientists, outperforming non-GenAI users by 49%. They also completed tasks 10% faster, proving AI’s impact on efficiency.
- Automating Workflows: GenAI can automate 35% of manufacturing and engineering tasks, 30% of construction work, and 31% of processes in mining, oil, and gas industries. This significantly reduces manual labor and enhances precision.
- High Automation Potential in Other Sectors: The finance industry can automate 36% of its tasks, agriculture 39%, information, and media 40%, and professional services 41%, showing AI’s widespread potential in knowledge management.
- Security and Privacy Concerns: 55% of organizations avoid certain AI use cases due to concerns about sensitive data, privacy, and security risks, hindering full-scale adoption.
- Readiness and Regulatory Barriers: Only 23% of organizations feel highly prepared for AI-related risk management and governance challenges. Additionally, more than 40% of companies struggle to measure AI’s exact impact.
- Key to Business Success: Knowledge management ranks among the top three factors influencing company success, yet only 9% of organizations feel prepared to address it, creating a significant gap.
- Challenges in Extracting Information: 29% of employees struggle to extract knowledge from repositories, a 50% higher rate than the 19% who struggle to retrieve information from colleagues.
- Perceived Value of Accessible Information: 71% of employees who find the information easy to access perceive it as more valuable, highlighting the direct link between accessibility and productivity.
- Comparing Knowledge Transfer Strategies: In companies prioritizing knowledge transfer, 80% of employees find it easy to access repository information, compared to 51% in organizations without such a focus.
- Challenges in Locating Information: Over 50% of employees struggle to find necessary information, leading to 80% having to recreate lost documents. This inefficiency wastes time and resources.
- Optimizing Knowledge Retrieval with AI: AI-powered solutions like Korra enable organizations to locate knowledge five times faster and reduce open ticket rates by 30%, improving overall efficiency and decision-making.
AI-driven Knowledge Management System Market: Market Dynamic
Driving Factors in the AI-driven Knowledge Management System Market
Advanced Natural Language Processing (NLP) for Contextual Understanding
AI-driven natural language processing (NLP) empowers organizations to extract precise information from large datasets by understanding the user context behind queries. As opposed to keyword searches, NLP uses semantic analysis and interpretation of intent rather than keyword matching - leading to more relevant search results, which reduce redundant searches while shortening retrieval times significantly. Plus, user interactions help refine accuracy over time allowing businesses to make fast decisions with accuracy that drive operational efficiencies while developing data-driven cultures for strategic growth.
Automated Knowledge Organization and Categorization
AI transforms knowledge management by automating the classification, tagging, and structuring of vast information repositories. Machine learning algorithms analyze patterns within data to ensure documents, reports, and insights are accurately categorized and easily retrievable; eliminating information silos while supporting seamless collaboration across departments - ultimately increasing productivity while decreasing manual effort while providing organizations with relevant data for innovation and strategic decision-making processes.
Restraints in the AI-driven Knowledge Management System Market
Data Fragmentation and Quality Issues
AI-powered Knowledge Management Systems (KMSs) face several significant hurdles due to fragmented and inconsistent data. Many organizations operate within siloed environments with information stored across disparate systems resulting in integration issues between AI models. Variations such as incomplete records or lack of standardization can reduce accuracy and reliability in insights gained by these AI models reducing accuracy or providing useful insight. Without proper cleaning and harmonization efforts, AI models could produce false or misleading outcomes hindering the effectiveness of knowledge management processes or decision-making processes.
Security and Compliance Risks
AI-powered KMS solutions must navigate complex security and regulatory landscapes to be effective, leaving organizations vulnerable to compliance violations, data breaches, and ethical dilemmas due to improper data governance practices. Without proper protection measures in place when handling sensitive information there are risks like cyber threats compromising confidential knowledge assets.
There are further complicating matters in adhering to global data protection regulations like GDPR/CCPA which add operational complexities while failing to implement stringent access controls, encryptions or monitoring can undermine trust in AI-powered KMS solutions, discouraging adoption among industries with stringent regulatory requirements.
Opportunities in the AI-driven Knowledge Management System Market
Enhanced Decision-Making with Predictive Analytics
AI-driven knowledge management systems use predictive analytics to deliver businesses actionable insights derived from both historical and real-time data, providing actionable insight for decision-making proactively based on emerging trends, customer behaviors, market shifts, and risks and opportunities allowing organizations to optimize strategies, streamline operations and enhance customer experiences with minimal risks or disruptions allowing businesses to stay ahead of competitors, mitigate disruptions early or take advantage of opportunities before mainstream adoption creates innovation and long-term growth for any given enterprise.
Automated Knowledge Discovery and Optimization
AI can transform knowledge management by automating the discovery, organization, and retrieval of crucial information. Through natural language processing (NLP) and machine learning algorithms, these AI systems categorize relevant data quickly for employees and decision-makers - eliminating time spent manually searching. Collaboration improves, and knowledge retention is ensured even amid workforce turnover - giving organizations leverage over manual searches with efficient knowledge retention policies to drive innovation, boost productivity, and optimize internal processes to drive fast decision-making operations in an ever-evolving market environment.
Trends in the AI-driven Knowledge Management System Market
Emergence of Knowledge-as-a-Service (KaaS)
Artificial Intelligence and cloud technologies are revolutionizing knowledge management through Knowledge-as-a-Service (KaaS). This model gives organizations seamless access to store, process, and retrieve information seamlessly while giving employees instantaneous access from any location without physical data storage constraints preventing remote work efficiency. Furthermore, AI-powered KaaS solutions improve collaboration by connecting business applications allowing real-time knowledge sharing while improving scalability by decreasing IT infrastructure costs while supporting advanced analytics, automation, and decision-making processes - an indispensable asset in modern enterprises!
Personalized and Context-Aware Knowledge Delivery
AI-powered knowledge management systems have advanced rapidly over time to offer highly customized and context-aware information delivery. Leveraging machine learning, natural language processing, and user behavior analytics to dynamically adjust content according to an individual's job role, preferences, and ongoing tasks allows AI systems to ensure relevant insights arrive at just the right moment reducing information overload and increasing productivity while tailoring responses, and recommendations for customers and creating knowledge-driven work cultures which ultimately foster innovation and competitive advantage for businesses.
AI-driven Knowledge Management System Market: Research Scope and Analysis
By Component Analysis
The solution segment leads the AI-powered Knowledge Management System market with a revenue share of 73.3% in 2025 due to their increased adoption across platforms, knowledge bases, search engines, chatbots, and content management systems (CMS). These solutions help organizations aggregate, retrieve, and organize knowledge for improved accessibility and efficiency across enterprises. AI-powered CMS/analytics tools further optimize content delivery while offering actionable insights to drive business intelligence. Organizations choose these solutions to streamline operations, enhance decision-making, and boost productivity. AI's capacity for automation, personalization, and analytics secures its leadership position within this segment - making it one of the most valued components on the market.
Services segment growth will likely accelerate at an impressive compound annual growth rate due to rising demand for consulting, implementation, and support services related to AI-powered Knowledge Management Systems. Organizations require expert guidance for seamless AI integration, customization, and system optimization. Managed and professional services play an essential part in making AI solutions effective, helping address challenges such as data migration, security concerns, and scaling issues. As businesses embrace digital transformation, their need for regular system upgrades, training sessions, and maintenance grows exponentially, pushing service adoption further forward. Furthermore, AI-powered knowledge solutions require ongoing optimizations which makes these services essential to long-term operational success and market expansion.
By Deployment Model Analysis
The on-premise model is likely to lead in the AI-based Knowledge Management System market with a
revenue share of 60.2% by the end of 2025, due to improved security, control, and customizability. Sensitive information-handling organizations, such as government departments, banks, and healthcare providers, prefer on-premise systems to meet stringent compliance requirements. Complex workflow businesses value in-depth integration with legacy systems to enable smooth operations. Dependable performance, low dependency on internet connectivity, and cost advantages in the long term drive adoption. Although cloud-based systems are gaining ground, on-premise systems being customizable to meet specific business requirements keep them in great demand in the market.
Cloud-based AI-based Knowledge Management Systems are witnessing high CAGR due to cost-effectiveness, scalability, and rapid deployment. Organizations find cloud-based systems easy to access and collaborate with from anywhere in the world. Subscription-based pricing reduces upfront investment, making AI-based knowledge management cost-effective for startups and SMEs. Regular software updates and AI upgrades improve system efficiency with no internal IT hassles. Cloud providers invest a great deal in advanced security features, which reduces data security issues. With digital transformation in full swing, cloud-based systems are being embraced as a solution for knowledge management in pursuit of innovation and agility.
By Enterprise Size Analysis
Large enterprises are likely to dominate in the AI-driven knowledge management system market with a revenue share of 69.2% in 2025, due to their strong financial assets, extensive data management needs, and regulatory compliance obligations. Organizations may invest heavily in AI solutions that seamlessly integrate into existing infrastructure. Large enterprises manage massive datasets across global operations, necessitating sophisticated knowledge management tools that deliver real-time insights and decision-making capabilities in real-time. AI-powered systems enhance productivity, streamline workflows, and foster collaboration across departments; furthermore, strict regulatory environments demand that large enterprises adopt AI solutions for governance and risk management that reinforce market leadership in this space.
SME businesses are growing with the highest CAGR in the AI-powered knowledge management systems market due to increasing digital transformation efforts, the availability and affordability of AI solutions, and increased operational efficiency requirements. Cloud AI solutions have become more accessible, enabling SMEs to implement cost-effective knowledge management systems without major upfront investments. Small businesses utilizing AI systems for decision-making, productivity enhancement, and knowledge sharing gain a competitive edge through these systems. Furthermore, AI-powered automation reduces manual process dependency allowing SMEs to scale efficiently; as their focus lies more on innovation and agility the rapid adoption of AI-powered tools fuels market growth with impressive compound annual growth rates.
By Technology Analysis
Natural Language Processing (NLP) is projected to prevail with the highest revenue share of 38.3% by the end of 2025, in AI-driven Knowledge Management System markets due to its capacity to efficiently process, understand, and produce human languages. Businesses increasingly rely on NLP for chatbots, virtual assistants, sentiment analysis, document processing automation as well as search engines like AI-powered search engines retrieving knowledge retrieving summarization automated summarization further driving this demand for NLP technologies like GPT/BERT transformer models that improve accuracy contextual understanding - an indispensable asset that helps businesses optimize data-driven insights while streamlining operations.
Machine Learning (ML) has emerged as a top technology within AI-powered Knowledge Management systems due to its capability of processing large datasets, detecting patterns, and making intelligent predictions. Machine learning (ML) advances knowledge discovery, personalization, and automation across industries by empowering systems to learn from past data sets and improve over time. Organizations utilize machine learning for predictive analytics, recommendation engines, fraud detection, and automated decision-making, among many other uses. Integration between Natural Language Processing (NLP) and Computer Vision further extends ML's use in intelligent document management and classification systems. With AI-powered insights becoming an increasing priority in business operations, machine learning (ML) stands to gain significant ground within this market.
By Application Analysis
Enterprise Knowledge Management is expected to dominate the AI-Driven Knowledge Management System Market with a revenue share of 28.4% by the end of 2025 due to organizations' growing recognition that knowledge is an indispensable asset. Implementation of AI-powered knowledge management solutions increases efficiency of capturing, storing and sharing knowledge for improved decision making and operational effectiveness. Furthermore, remote work increases the demand for strong knowledge management solutions that ensure seamless information access among distributed teams.
Customer Support & Self-service solutions dominated the second most prevalent segment. AI-powered knowledge management systems in this arena enable customers to self-serve issues through intelligent chatbots and extensive knowledge bases, relieving support staff of any unnecessary burden while improving customer satisfaction and quicker resolution times for organizations. As customer expectations of instantaneous support increase rapidly, investing in AI solutions for customer care has become a top strategic priority.
By End User Analysis
It is estimated that BFSI is likely to lead with the revenue share of 26.7% in the AI-powered Knowledge Management System (KMS) market by the end of 2025, due to their increased use of artificial intelligence for fraud detection, risk evaluation, regulatory adherence monitoring, customer support automation, chatbot deployments, and virtual assistant interactions for enhanced decision-making processes and customer experiences through virtual assistants or chatbots. Additionally, digital banking adoption growth along with cybersecurity issues make BFSI one of the prime segments in this sector and market for AI KMS-enabled KMS solutions making BFSI the leader within this market sector segment by far.
Healthcare and Life Sciences is projected to become one of the top two segments in the AI-driven Knowledge Management System market by 2019. Increased adoption of AI for medical research, diagnostics, patient data management, and telemedicine fuel this growth; AI-powered KMS helps healthcare professionals access real-time patient information quickly for clinical decision-making purposes, operational efficiencies enhancement, and regulatory compliance support - with ever-growing demands for electronic health records (EHRs) as well as managing vast amounts of medical information at hand, AI KMS has become essential in improving healthcare delivery and optimizing patient care delivery outcomes and optimizing patient care delivery outcomes and optimizing delivery of patient care delivery services.
The AI-driven Knowledge Management System Market Report is segmented based on the following
By Component
- Solution
- AI-powered Knowledge Management Platforms
- AI-enabled Knowledge Bases
- AI-powered Search Engines & Chatbots
- AI-driven Content Management Systems (CMS)
- Others (Analytics & Reporting Tools. etc.)
- Services
- Implementation & Integration
- Consulting & Training
- Support & Maintenance
By Deployment Model
By Enterprise Size
By Technology
- Machine Learning (ML)
- Natural Language Processing (NLP)
- Robotic Process Automation (RPA)
- Computer Vision
- Deep Learning
- Others
By Application
- Enterprise Knowledge Management
- Customer Support & Self-service
- Document Management & Content Retrieval
- Training & E-learning
- HR & Employee Onboarding
- Market Intelligence & Competitive Analysis
- Legal & Compliance Management
- Others
By End User
- Banking, Financial Services & Insurance (BFSI)
- Healthcare & Life Sciences
- IT & Telecommunications
- Retail & E-commerce
- Government & Public Sector
- Education & E-learning
- Manufacturing
- Energy & Utilities
- Others
Regional Analysis
Region with the largest Share
North America is predicted to dominate the AI-powered Knowledge Management System (KMS) market with a
revenue share of 38.9% in 2025 due to its advanced technological infrastructure, substantial digital transformation investments, and early adoption of AI-powered solutions by businesses of various industries across different verticals. KMS solutions facilitate innovation while strengthening collaboration, optimizing workflows, and aiding decision-making processes across organizations across industries. Businesses leveraging KMS also prioritize innovation across sectors while benefitting from strong government and corporate support of AI initiatives coupled with its robust economy, as well as the presence of major tech companies and AI research centers which ensure North America remains at the helm even into future years.
Region with Highest CAGR
Asia-Pacific is projected to experience the highest CAGR for AI-driven KMS due to rapid digital transformation, increasing adoption of AI technologies, and an explosion in demand for efficient knowledge management solutions. India and China are driving this expansion with robust IT sectors, vibrant startup ecosystems, and government initiatives promoting digitalization proving instrumental. Further increasing KMS adoption is expanding internet penetration rates as workplace efficiencies become a greater focus within organizations as expanding internet penetration rate drives up KMS adoption - as businesses integrate AI-powered solutions into productivity increases enhancing collaboration, Asia is set to become a quickly expanding AI KMS market.
By Region
North America
Europe
- Germany
- The U.K.
- France
- Italy
- Russia
- Spain
- Benelux
- Nordic
- Rest of Europe
Asia-Pacific
- China
- Japan
- South Korea
- India
- ANZ
- ASEAN
- Rest of Asia-Pacific
Latin America
- Brazil
- Mexico
- Argentina
- Colombia
- Rest of Latin America
Middle East & Africa
- Saudi Arabia
- UAE
- South Africa
- Israel
- Egypt
- Rest of MEA
Competitive Landscape
The AI-driven knowledge management system market is highly competitive, with key players like Microsoft, IBM, Google, and Salesforce leveraging AI to enhance enterprise knowledge sharing. Startups such as Guru, Bloomfire, and Lucidworks challenge incumbents with innovative AI-powered search and automation. Companies differentiate through natural language processing (NLP), machine learning, and generative AI capabilities.
The market is driven by increasing demand for efficient knowledge retrieval, collaboration, and automation in enterprises. Industry-specific solutions are emerging, intensifying competition. Growth is fueled by digital transformation, remote work trends, and the need for real-time insights, making AI-driven knowledge management a critical business asset.
Some of the prominent players in the global AI-driven Knowledge Management System are
- OpenText Corporation
- ServiceNow, Inc.
- SAP SE
- Salesforce Inc.
- Atlassian Corporation
- Microsoft Corporation
- International Business Machines Corporation (IBM)
- Amazon Web Services, Inc.
- Google LLC
- Coveo Solutions Inc.
- Lucidworks
- Sinequa
- Other Key Players
Recent Developments
- In January 2025, ServiceNow introduced its “Workflow Data Fabric” technology to integrate business and technology data, enabling seamless workflows and AI-driven automation. The company also launched an AI Agent Gallery featuring over 60 use cases and announced the upcoming release of AI Agent Studio in March 2025.
- In November 2024, Assai acquired Viewport.ai, an Amsterdam-based company specializing in AI-powered industrial data and knowledge management. This acquisition strengthens Assai’s capabilities in handling unstructured data, enhancing search functionalities, and cross-referencing within technical documentation.
- In November 2024, OpenText introduced Cloud Editions (CE) 24.4 at OpenText World 2024, showcasing innovations in Business Cloud, AI, and Technology. The update emphasizes secure, AI-integrated solutions to enhance data connectivity, optimize workflows, and maximize human efficiency in multi-cloud environments.
- In May 2024, during its Knowledge 2024 conference, ServiceNow announced the extension of its generative AI solutions. These enhancements help organizations work smarter and more efficiently by automating complex processes and improving decision-making.
- In August 2024, Bloomfire was honored by CIO Review for its innovative AI-powered solutions that transform how organizations access and leverage knowledge.
Report Details
Report Characteristics |
Market Size (2025) |
USD 9.6 Bn |
Forecast Value (2034) |
USD 251.2 Bn |
CAGR (2025-2034) |
43.7% |
Historical Data |
2019 – 2024 |
The US Market Size (2025) |
USD 3.1 Bn |
Forecast Data |
2026 – 2034 |
Base Year |
2024 |
Estimate Year |
2025 |
Report Coverage |
Market Revenue Estimation, Market Dynamics, Competitive Landscape, Growth Factors and etc. |
Segments Covered |
By Component (Solution, and Services), By Deployment Model (Cloud-Based, On-Premises), By Enterprise Size (Large Enterprises, SMEs), By Technology (Machine Learning (ML), Natural Language Processing (NLP), Robotic Process Automation (RPA), Computer Vision, Deep Learning, Others), By Application (Enterprise Knowledge Management, Customer Support & Self-service, Document Management & Content Retrieval, Training & E-learning, HR & Employee Onboarding, Market Intelligence & Competitive Analysis, Legal & Compliance Management, Others), By End User (Banking, Financial Services & Insurance (BFSI), Healthcare & Life Sciences, IT & Telecommunications, Retail & E-commerce, Government & Public Sector, Education & E-learning, Manufacturing, Energy & Utilities, Others) |
Regional Coverage |
North America – The US and Canada; Europe – Germany, The UK, France, Russia, Spain, Italy, Benelux, Nordic, & Rest of Europe; Asia- Pacific– China, Japan, South Korea, India, ANZ, ASEAN, Rest of APAC; Latin America – Brazil, Mexico, Argentina, Colombia, Rest of Latin America; Middle East & Africa – Saudi Arabia, UAE, South Africa, Turkey, Egypt, Israel, & Rest of MEA
|
Prominent Players |
OpenText Corporation, ServiceNow, Inc., SAP SE, Salesforce Inc., Atlassian Corporation, Microsoft Corporation, International Business Machines Corporation (IBM), Amazon Web Services, Inc., Google LLC, Coveo Solutions Inc., Lucidworks, Sinequa, and Other Key Players |
Purchase Options |
We have three licenses to opt for: Single User License (Limited to 1 user), Multi-User License (Up to 5 Users) and Corporate Use License (Unlimited User) along with free report customization equivalent to 0 analyst working days, 3 analysts working days and 5 analysts working days respectively. |
Frequently Asked Questions
The Global AI-driven Knowledge Management System Market size is estimated to have a value of USD 9.6 billion in 2025 and is expected to reach USD 251.2 billion by the end of 2034.
North America is expected to be the largest market share for the Global AI-driven Knowledge Management System Market with a share of about 38.9% in 2025.
Some of the major key players in the Global AI-driven Knowledge Management System Market are Microsoft Corporation, International Business Machines Corporation (IBM), Amazon Web Services, Inc., and many others.
The market is growing at a CAGR of 43.7 percent over the forecasted period.
The US AI-driven Knowledge Management System Market size is estimated to have a value of USD 3.1 billion in 2025 and is expected to reach USD 68.7 billion by the end of 2034.