• +1 (732) 369 9777
  • +1 (732) 629 9444
  • enquiry@dimensionmarketresearch.com
logo Composite AI Market

Comprehensive Industry Landscape and Strategic Outlook

  • About Us
  • Insight
    Trending Reports Latest Reports
  • Industries
    Aerospace & Defence
    Agriculture & Horticulture
    Automotive
    BFSI & Education
    Chemical & Material
    Consumer Goods
    Electrical & Semiconductor
    ICT & TMT
    Energy & Power
    Food & Beverages
    Industry Automation & Equipment
    Manufacturing & Construction
    Medical Devices & Healthcare IT
    Metals & Minerals
    Packaging & Logistics
    Pharmaceuticals & Healthcare
    Sports & Fitness
  • News And Media
  • Contact us
Speak to Analyst
Request Free Sample
/images/logo.png
  • home
  • ICT & TMT
  • Composite AI Market

Composite AI Market By Offering (Hardware, Software, Services), By Technique, By Application, By End User - Global Industry Outlook, Key Companies (IBM Corp, SAS, Microsoft Corp, and others), Trends and Forecast 2023-2032

Published on : November-2023  Report Code : RC-550  Pages Count : 258  Report Format : PDF
Overview Table of Content Download Report's Excerpt Request Free Sample

Market Overview

The Global Composite AI Market size is projected to reach USD 1.8 billion in 2025 and grow at a compound annual growth rate of 39.1% from there until 2034 to reach a value of USD 35.6 billion.

Composite AI refers to the use of multiple artificial intelligence (AI) techniques together to solve complex problems more effectively. Instead of using just one kind of AI method, like machine learning alone, Composite AI combines various approaches such as natural language processing, symbolic reasoning, knowledge graphs, and deep learning. This mix allows systems to handle tasks that require understanding, learning, and reasoning, making AI more adaptable, explainable, and useful in real-world scenarios.

The growth of Composite AI is being driven by the increasing demand for smarter and more flexible AI applications across industries. Businesses need AI systems that can work with both structured and unstructured data, adapt to changes, and provide meaningful insights. For example, in healthcare, combining machine learning with knowledge graphs helps in clinical decision-making. In finance, Composite AI can detect fraud more accurately by blending statistical analysis with pattern recognition. These needs are encouraging companies and researchers to move beyond single-technique AI models.

One key trend is the shift toward explainable AI (XAI). Many organizations want to understand how AI makes decisions, especially in regulated industries like banking, insurance, and healthcare. Composite AI allows models to be more transparent because combining symbolic reasoning with other methods makes the logic behind decisions easier to trace. Another trend is the integration of AI with business process automation tools, allowing companies to use AI for smarter workflows, customer service, and operations.

Recent years have seen several notable developments in the Composite AI field. Tech giants and startups alike have launched platforms that support the combination of AI techniques. Companies like IBM, Google, and Microsoft are integrating symbolic AI with deep learning in their AI services. Startups are also using Composite AI to deliver more human-like virtual assistants and personalized recommendations. The use of AI in enterprise software has made Composite AI part of business intelligence and analytics tools.

Industry events and research conferences have begun focusing on Composite AI. Conferences like NeurIPS, AAAI, and the Knowledge Graph Conference are discussing how to combine symbolic and statistical AI. Standards bodies and research labs are also exploring ways to improve interoperability between different AI models, making it easier to build Composite AI systems. These discussions are shaping the future direction of AI technology.

The US Composite AI Market

The US Composite AI Market size is projected to reach USD 0.7 billion in 2025 at a compound annual growth rate of 36.6% over its forecast period.

The US plays a leading role in the Composite AI market due to its strong ecosystem of technology companies, research institutions, and venture capital. It is home to many top AI innovators and cloud service providers who are driving the development and deployment of Composite AI solutions. The US government and military are also investing in AI for national security, healthcare, and infrastructure, boosting domestic demand.

Academic institutions contribute cutting-edge research, especially in combining symbolic reasoning with machine learning. In addition, the US has a large customer base across industries like finance, healthcare, and manufacturing that actively adopts AI to improve operations. With supportive policies and a mature digital infrastructure, the US continues to shape the global direction of the Composite AI market.

Europe Composite AI Market

Europe Composite AI Market size is projected to reach USD 0.4 billion in 2025 at a compound annual growth rate of 38.1% over its forecast period.

Europe plays a significant role in the Composite AI market through its focus on ethical, explainable, and trustworthy AI development. European countries are promoting AI systems that combine multiple techniques to ensure transparency and compliance with strict data privacy regulations like GDPR. The region is home to leading AI research centers and institutions that support innovation in hybrid AI models. Public and private funding programs, including those from the European Union, are encouraging the growth of AI startups and collaborative research. Europe’s strong presence in industries such as automotive, healthcare, and manufacturing creates demand for intelligent and customized AI solutions. With a growing emphasis on human-centric and sustainable AI, Europe is helping to shape responsible Composite AI adoption across the world.

Japan Composite AI Market

Japan Composite AI Market size is projected to reach USD 0.1 billion in 2025 at a compound annual growth rate of 41.5% over its forecast period.

Japan plays a vital role in the Composite AI market by focusing on real-world applications that combine different AI methods such as machine learning, symbolic reasoning, and expert systems. The country emphasizes practical and human-centric AI solutions, especially in industries like manufacturing, healthcare, and logistics. Japan supports innovation through strong government initiatives, advanced research facilities, and collaborations between universities and tech companies. Its focus on automation, robotics, and AI integration into industrial systems helps drive the adoption of Composite AI. Japan also prioritizes ethical and explainable AI, aligning with its broader vision of a technology-driven society. With a strong foundation in both hardware and AI development, Japan continues to influence how Composite AI is applied across various sectors.

Composite AI Market: Key Takeaways

  • Market Growth: The Composite AI Market size is expected to grow by USD 33.1 billion, at a CAGR of 39.1%, during the forecasted period of 2026 to 2034.
  • By Offering: The software segment is anticipated to get the majority share of the Composite AI Market in 2025.
  • By Application: The predictive maintenance segment is expected to get the largest revenue share in 2025 in the Composite AI Market.
  • Regional Insight: North America is expected to hold a 42.0% share of revenue in the Global Composite AI Market in 2025.
  • Use Cases: Some of the use cases of Composite AI include fraud detection in Finance, customer support automation, and more.

Composite AI Market: Use Cases:

  • Healthcare Diagnosis Support: Composite AI improves clinical decision-making by combining machine learning with medical knowledge graphs and natural language processing. It helps doctors analyze patient data, medical literature, and symptoms to suggest possible diagnoses. This leads to faster, more accurate, and personalized treatment plans.
  • Fraud Detection in Finance: Financial institutions use Composite AI to detect complex fraud patterns by blending statistical modeling, behavioral analytics, and rule-based systems. This layered approach increases accuracy and reduces false alarms. It helps in monitoring transactions in real-time and adapting to evolving fraud tactics.
  • Customer Support Automation: Composite AI powers smarter virtual assistants by merging natural language understanding, reasoning engines, and context-aware learning. These assistants handle more complex customer queries with better accuracy and context retention. They improve response times and reduce the load on human agents.
  • Supply Chain Optimization: In supply chains, Composite AI uses forecasting models, real-time tracking data, and decision logic to optimize inventory, delivery routes, and demand planning. It adapts to changes quickly, such as disruptions or shifts in demand. This leads to improved efficiency and reduced operational costs.

Stats & Facts

  • As per Vena Solutions, two out of five companies globally are currently using AI in their operations, with India leading global adoption rates at approximately 59%, reflecting the country's rapid embrace of emerging technologies in business environments.
  • According to J.P. Morgan, the investment buzz around generative AI models added a staggering USD 1.4 trillion to market capitalization and drove a 45% surge in corporate profits—all within just the first four months of 2023, highlighting the economic impact of early AI integration.
  • As noted by Vena Solutions, 65% of global businesses have adopted AI specifically to reduce manual or repetitive tasks, showcasing a clear use-case-driven adoption strategy across markets.
  • As per Vena Solutions’ 2025 State of Strategic Finance report, 57% of finance teams are already using AI in some capacity, and an additional 21% have acquired AI tools but haven’t fully implemented them, pointing to a growing but uneven rollout.
  • According to Vena Solutions, 55% of finance professionals use AI for data analysis, while predictive modeling (47%), generative AI (~33%), and anomaly detection (~33%) also represent key areas of active AI application.
  • As reported by Vena Solutions, despite increasing AI tool adoption, 89% of finance teams still rely heavily on Excel due to its flexibility, ease of integration, and deep-rooted use in core financial processes.
  • As highlighted in Vena Solutions' findings, 20% of finance teams view AI and machine learning as major skill gaps, indicating that adoption growth may be slowed by internal capability issues.
  • According to Vena Solutions, while 83% of CFOs feel overwhelmed with daily responsibilities, 44% admit that a workflow automation skills gap is holding back broader AI implementation within finance teams.
  • According to a Harvard study, management consultants who used AI tools completed tasks 25.1% faster, completed 12.2% more tasks, and delivered work that was over 40% higher in quality than their counterparts without AI tools.
  • As reported by Goldman Sachs, generative AI could improve productivity growth by 1.5% and contribute to a 7% rise in global GDP—amounting to a $7 trillion boost over the next decade.
  • According to Vena Solutions, while 76% of finance teams have automated financial reporting, only 40% have done the same for forecasting and just 44% for budgeting, pointing to uneven automation progress in financial workflows.
  • As revealed by BNP Paribas, 44% of hedge fund managers now use ChatGPT at work, primarily for drafting marketing content (35%) and summarizing lengthy reports (36%), showcasing early AI adoption in high-level finance roles.
  • As stated by the European Central Bank, AI systems are now used to sort and classify information collected from over 10 million legal entities across Europe, covering sectors like financial institutions, public organizations, and non-financial corporations.

Market Dynamic

Driving Factors in the Composite AI Market

Rising Demand for Explainable and Trustworthy AI

One of the major growth drivers of the Composite AI market is the increasing need for explainable and trustworthy AI systems. Traditional black-box AI models often struggle to provide insights into how decisions are made, which is a significant concern in sectors like healthcare, finance, and legal services. Composite AI combines symbolic reasoning and machine learning, allowing systems to explain their logic and provide traceable outcomes. This level of transparency is essential for building trust with users, complying with regulatory standards, and ensuring ethical use of AI. As data privacy and accountability become more important globally, organizations are turning to Composite AI solutions that can offer powerful insights while still being understandable and auditable. This need is pushing adoption across many regulated industries.

Growing Use of Complex, Multi-Source Data

The Composite AI market is also driven by the rising complexity and variety of data that businesses and institutions handle daily. From structured data in databases to unstructured text, images, and sensor inputs, organizations are looking for AI systems that can handle all these formats together. Composite AI enables this by integrating different AI techniques—such as deep learning for image processing and natural language processing for text—with rule-based systems for logical reasoning. This helps create more complete and accurate insights from varied data sources. As the volume of data continues to grow across sectors like manufacturing, retail, and logistics, the ability to process and learn from it holistically becomes essential. This is making Composite AI a strategic choice for digital transformation initiatives.

Restraints in the Composite AI Market

High Complexity in Integration and Implementation

One of the key restraints in the Composite AI market is the complexity involved in integrating multiple AI techniques into a single, functional system. Unlike traditional AI models that use a single approach, Composite AI requires careful coordination between different components such as machine learning, natural language processing, and symbolic reasoning. This can result in longer development cycles, higher technical skill requirements, and increased chances of errors during implementation. Many organizations lack the internal expertise or infrastructure to support such complex systems, leading to dependency on external vendors. This complexity also increases the cost of maintenance and upgrades, making it less accessible for smaller enterprises. As a result, adoption can be slow in businesses without advanced technical capabilities.

Lack of Standardization and Interoperability

Another major restraint in the growth of the Composite AI market is the lack of standardization across tools, platforms, and frameworks. Since Composite AI involves combining different AI technologies, each with its own architecture and data formats, ensuring smooth interoperability becomes a challenge. This can lead to compatibility issues, data silos, and integration bottlenecks, particularly when scaling solutions across departments or systems. Moreover, the absence of industry-wide standards makes it difficult to benchmark performance or ensure consistent quality. This lack of uniform practices can slow innovation and create confusion among developers and end-users. Until there are clearer guidelines and universal frameworks, many organizations may hesitate to fully commit to Composite AI solutions.

Opportunities in the Composite AI Market

Expansion into Industry-Specific Solutions

A major opportunity in the Composite AI market lies in developing tailored solutions for specific industries such as healthcare, automotive, manufacturing, and logistics. Each sector has unique data types, workflows, and challenges that benefit from a mix of AI techniques. For example, healthcare systems need to process clinical data, medical images, and diagnostic rules simultaneously—something Composite AI can handle effectively. By creating industry-specific Composite AI models, companies can offer more accurate, relevant, and high-performing applications. This specialization helps improve adoption rates as customers see immediate value. As industries continue to embrace digital transformation, there is a strong demand for AI tools that align precisely with operational needs and regulatory requirements, opening up a wide market for focused Composite AI offerings.

Growth in AI-as-a-Service and Cloud Platforms

The rising popularity of AI-as-a-Service (AIaaS) and cloud-based platforms presents a significant opportunity for expanding Composite AI solutions. Cloud providers now offer scalable environments where different AI models can be integrated, tested, and deployed more easily than in traditional setups. This reduces the cost and technical barriers for businesses looking to adopt advanced AI capabilities without investing heavily in infrastructure. Composite AI can be delivered through modular, API-driven services that allow users to plug and play functionalities as needed. This flexibility is especially attractive to startups and mid-sized enterprises seeking competitive AI tools with lower upfront investment. As cloud ecosystems grow and support more hybrid AI development, the availability and accessibility of Composite AI solutions are expected to rise rapidly.

Trends in the Composite AI Market

Advances in Multi-Modal and Agent‑Style AI

Composite AI now increasingly blends diverse models—like deep learning, symbolic reasoning, and generative methods—to process text, images, audio, and structured data within one system. These “step-by-step” or agent-style approaches let AI refine its reasoning across multiple stages and data types, improving decision quality and context awareness. Experts note that such systems are emerging as the next frontier in AI, promising smarter, more adaptable tools that go beyond basic automation.

Growing Integration with Edge Computing and IoT

With IoT and real-time needs on the rise, Composite AI is moving closer to data sources. It’s now being integrated into edge devices—like sensors and mobile units—enabling faster decision-making, reduced latency, and enhanced privacy. This shift empowers applications in smart cities, autonomous systems, industrial monitoring, and healthcare by combining AI reasoning with on‑site data processing

Research Scope and Analysis

By Offering Analysis

Software as an offering will be leading the Composite AI market in 2025 with a share of 49.6%, driven by the growing demand for flexible, scalable, and easy-to-integrate AI solutions. Businesses are increasingly adopting software platforms that combine various AI techniques like machine learning, deep learning, and natural language processing to handle complex data and decision-making tasks. These software tools allow companies to build, customize, and deploy intelligent systems without needing deep technical knowledge.

The rise of cloud-based solutions, low-code platforms, and automation software is helping organizations across sectors—such as healthcare, finance, and logistics—improve productivity and efficiency. Continuous upgrades, real-time insights, and better user interfaces are making Composite AI software a preferred choice. With growing focus on explainability, transparency, and integration with existing systems, software offerings are expected to remain central to market expansion, supporting both large enterprises and smaller businesses in their digital transformation journey.

Showing strong momentum, services as an offering are experiencing significant growth over the forecast period in the Composite AI market. This growth is being supported by the need for expert consulting, integration, and support services to help businesses successfully implement hybrid AI solutions. As companies look to combine multiple AI technologies—such as symbolic reasoning, deep learning, and machine learning—they rely on professional services to guide development, training, and deployment.

Service providers help organizations overcome technical challenges, align AI with business goals, and ensure ongoing optimization. Demand is especially high among sectors with complex operations, including manufacturing, healthcare, and financial services. Managed services, training, and technical support also help businesses maintain performance and adapt to evolving needs. With many enterprises lacking in-house expertise, services are expected to remain a vital component in the successful rollout and scaling of Composite AI projects worldwide.

By Technique Analysis

Data mining & machine learning techniques will be leading the Composite AI market in 2025 with a share of 28.9%, due to their ability to uncover hidden patterns, trends, and relationships within large volumes of structured and unstructured data. These techniques are essential for making accurate predictions, optimizing processes, and enhancing decision-making across various industries. By combining data mining with other AI models such as deep learning and natural language processing, organizations can build more powerful and adaptable systems. This approach supports real-time analytics, personalized services, and automation at scale. As businesses increasingly rely on data-driven insights, the demand for integrated solutions that can handle diverse datasets continues to grow. With the ability to transform raw data into actionable intelligence, data mining techniques are expected to play a central role in advancing the capabilities and adoption of Composite AI technologies across the global market.

Online platforms are showing significant growth over the forecast period in the Composite AI market, as more organizations turn to cloud-based tools and digital environments for developing and deploying hybrid AI solutions. These platforms allow businesses to access a wide range of AI models—such as symbolic reasoning, machine learning, and NLP—within a single, user-friendly interface. Online platforms simplify integration, support remote collaboration, and speed up model development, making them ideal for both large enterprises and small businesses. With flexible subscription models and real-time scalability, these platforms reduce the need for heavy infrastructure investment. Industries like education, retail, and customer service are increasingly adopting such solutions to streamline operations and improve user experience. As the demand for fast, cost-effective, and accessible AI tools grows, online platforms are expected to become a vital part of Composite AI deployment across global markets.

By Application Analysis

Predictive maintenance will be leading the Composite AI market in 2025 with a share of 31.9%, driven by its ability to prevent equipment failures, reduce downtime, and cut operational costs across industries. By combining techniques like machine learning, data mining, and symbolic reasoning, Composite AI helps detect early signs of wear or malfunction in machines and systems.

This approach enables organizations to act before issues become serious, improving safety and extending asset life. Industries such as manufacturing, energy, transportation, and utilities rely on predictive maintenance to keep operations running smoothly and avoid unexpected breakdowns. The ability to analyze sensor data, maintenance history, and environmental factors in real time makes Composite AI a powerful tool for maintenance planning. As more businesses aim to improve efficiency and reduce waste, the role of predictive maintenance continues to grow as a key application area within the Composite AI market.

Product design & development is experiencing significant growth over the forecast period in the Composite AI market, as businesses aim to speed up innovation while lowering risks and costs. By merging techniques such as natural language processing, deep learning, and reasoning systems, Composite AI supports smarter decision-making during the design process. It helps teams analyze customer feedback, market trends, and engineering data to create better, more user-friendly products.

This approach allows for faster prototyping, fewer design errors, and improved product performance. Sectors like automotive, consumer electronics, and industrial equipment are using Composite AI to enhance product lifecycle management. With growing competition and shorter time-to-market goals, the use of intelligent design systems is becoming essential. Composite AI is expected to continue transforming how products are conceptualized, tested, and refined in real-world environments.

By End User Analysis

BFSI will be leading the Composite AI market in 2025 with a share of 31.8%, as financial institutions increasingly adopt advanced technologies to improve efficiency, security, and customer experience. By combining machine learning, natural language processing, and rule-based reasoning, Composite AI helps detect fraud, automate credit scoring, and offer personalized banking services. It also enables smarter risk management and compliance tracking, which are critical in a heavily regulated sector. Banks and insurance companies benefit from using hybrid AI models that can process large volumes of data in real time while also explaining how decisions are made. This transparency builds trust with customers and regulators. With the rising need for secure, reliable, and predictive tools, the BFSI sector continues to be one of the most active users of Composite AI, driving strong demand across the region and shaping future growth strategies.

Healthcare & life sciences are witnessing significant growth over the forecast period in the Composite AI market, fueled by the need for intelligent systems that support diagnosis, treatment planning, and drug discovery. Hospitals, research labs, and biotech firms are turning to hybrid AI models that blend machine learning, medical knowledge graphs, and data mining to make faster and more accurate clinical decisions. These models help analyze patient histories, medical imaging, and real-time health data to guide healthcare professionals. In life sciences, Composite AI is being used to improve drug development timelines and target identification. With rising demand for precision medicine and personalized care, the sector is leveraging AI to deliver better patient outcomes while managing large volumes of complex data. The continued integration of AI into health systems and research is expected to support rapid growth in this sector across global markets.

The Composite AI Market Report is segmented on the basis of the following:

By Offering

  • Hardware
  • Software
  • Services

 By Technique

  • Data Mining & Machine Learning
  • Data Processing
  • Pattern Recognition
  • Conditioned Monitoring
  • Proactive Mechanism
  • Others

By Application

  • Predictive Maintenance
  • Quality Control
  • Product Design & Development
  • Security & Surveillance
  • Customer Service

By End User

  • BFSI
  • Telecom
  • Healthcare & Lifesciences
  • Retail & E-Commerce
  • Energy & Power
  • Media & Entertainment
  • Government & Defense
  • Transportation & Logistics
  • Manufacturing
  • Others

Regional Analysis

Leading Region in the Composite AI Market

North America is leading the Composite AI market in 2025 with a share of 42.0%, showing its strong position in shaping the global landscape. The region’s growth is driven by the wide adoption of advanced technologies across sectors like healthcare, finance, manufacturing, and retail. Companies in North America are combining multiple AI techniques—such as machine learning, natural language processing, and symbolic reasoning—to create smarter, more accurate, and explainable systems.

The presence of major tech firms, research institutions, and AI-focused startups provides a strong foundation for innovation in Composite AI. Government initiatives supporting digital transformation and responsible AI use are also helping fuel the market. In addition, cloud infrastructure, skilled talent, and high digital awareness make it easier to develop and deploy hybrid AI models at scale. The region’s focus on both performance and transparency is encouraging more businesses to invest in Composite AI. With these strengths, North America continues to play a central role in the market’s ongoing growth.

Fastest Growing Region in the Composite AI Market

Asia Pacific is showing significant growth over the forecast period in the Composite AI market due to rising demand for intelligent automation, digital transformation, and real-time data analytics across industries. Countries like China, Japan, South Korea, and India are investing in advanced technologies that combine machine learning, deep learning, and symbolic reasoning to improve business operations. The region’s expanding IT infrastructure, strong government support, and growing adoption of hybrid AI models in manufacturing, healthcare, and logistics are driving momentum. As more enterprises look for scalable, cost-effective, and explainable AI solutions, the use of Composite AI technologies is expected to rise steadily across Asia Pacific, supporting its increasing influence in the global market.

By Region

North America

  • The U.S.
  • Canada

Europe

  • Germany
  • The U.K.
  • France
  • Italy
  • Russia
  • Spain
  • Benelux
  • Nordic
  • Rest of Europe

Asia-Pacific

  • China
  • Japan
  • South Korea
  • India
  • ANZ
  • ASEAN
  • Rest of Asia-Pacific

Latin America

  • Brazil
  • Mexico
  • Argentina
  • Colombia
  • Rest of Latin America

Middle East & Africa

  • Saudi Arabia
  • UAE
  • South Africa
  • Israel
  • Egypt
  • Rest of MEA

Competitive Landscape

The competitive landscape of the Composite AI market is becoming more dynamic as technology providers, startups, and research institutions focus on combining different AI techniques to deliver smarter solutions. Companies are working to create platforms that mix machine learning, natural language processing, symbolic reasoning, and other tools to handle more complex tasks. The competition centers around offering flexible, explainable, and efficient AI models that can be easily applied across industries like healthcare, finance, retail, and manufacturing. There is also growing interest in low-code or no-code platforms that make Composite AI more accessible to non-technical users. As demand rises for intelligent automation and decision-making tools, many players are racing to offer scalable, secure, and industry-specific solutions to gain an edge in this evolving market.

Some of the prominent players in the global Composite AI are:

  • IBM
  • Infosys
  • Intel
  • Meta
  • Microsoft
  • Lenovo
  • Dell Technologies
  • Accenture
  • Adobe
  • NEC Corporation
  • NVIDIA
  • Oracle
  • Alibaba Cloud
  • Amazon Web Services (AWS)
  • Amdocs
  • Anaconda
  • Baidu
  • Cloudera
  • Cognizant
  • DataRobot
  • Databricks
  • Other Key Players

Recent Developments

  • In June 2025, PTC launched Creo® 12, the latest version of its CAD solution, designed to help manufacturers deliver high-quality designs faster. Creo 12 features major upgrades across design, simulation, and manufacturing, including improved usability with feature presets and enhanced sheet metal tools. It introduces advanced composite design tools, AI-driven generative design with thermal physics, and simplified cable harness development. Integration with Windchill® PLM supports sustainability through material traceability. Additionally, the latest Creo+® SaaS version offers cloud collaboration and entitlement management, further boosting productivity and innovation for engineering teams.
  • In May 2025, IBM introduced new hybrid technologies designed to eliminate long-standing barriers to scaling enterprise AI, enabling businesses to build and deploy AI agents using their data. With over a billion apps expected by 2028, easy integration and data readiness are essential. A recent IBM study reveals that AI investment is set to more than double in two years, yet only 25% of initiatives meet ROI goals. IBM is now combining hybrid cloud, AI agent capabilities, and consulting expertise to drive real, scalable business outcomes.
  • In October 2024, Tata Consultancy Services extended its partnership with NVIDIA to launch industry-specific AI solutions through a dedicated business unit within its AI. Cloud division. Building on a five-year collaboration, the unit combines TCS’s enterprise expertise with NVIDIA’s AI platforms to support faster, scalable AI adoption. As highlighted in the TCS AI for Business Study, enterprise AI strategies vary widely. This new unit will deliver customized adoption plans using global CoEs, NVIDIA’s accelerated computing, AI software, and skilled talent.
  • In July 2024, Fireworks AI raised USD 52 million in a funding round led by Sequoia, pushing its valuation to USD 552 million. The investment will support the growth of its team, speed up platform development, and advance the adoption of compound AI systems. The company’s enhanced inference platform now includes the latest models, advanced customization, and improved production readiness, enabling faster AI application development without large ML teams. Through partnerships with MongoDB, Meta, NVIDIA, and AMD, Fireworks AI offers a cost-efficient, production-ready solution for building complex, multi-model AI systems.

 

Frequently Asked Questions

  • How big is the Global Composite AI Market?

    The Global Composite AI Market is estimated to reach USD 904.5 million in 2023, which is further expected to reach USD 16,174.1 million by 2032.

  • Which region accounted for the largest Global Composite AI Market?

    North America dominates the Global Composite AI Market with a share of 39.8% in 2023.

  • Who are the key players in the Global Composite AI Market?

    Some of the major key players in the Global Composite AI Market are IBM Corp, SAS, Microsoft Corp, and many others.

  • What is the growth rate in the Global Composite AI Market?

    The market is growing at a CAGR of 37.8 percent over the forecasted period.

  • Contents

      1.Introduction
        1.1.Objectives of the Study
        1.2.Market Scope
        1.3.Market Definition and Scope
      2.Composite AI Market Market Overview
        2.1.Global Composite AI Market Market Overview by Type
        2.2.Global Composite AI Market Market Overview by Application
      3.Composite AI Market Market Dynamics, Opportunity, Regulations, and Trends Analysis
        3.1.Market Dynamics
          3.1.1.Composite AI Market Market Drivers
          3.1.2.Composite AI Market Market Opportunities
          3.1.3.Composite AI Market Market Restraints
          3.1.4.Composite AI Market Market Challenges
        3.2.Emerging Trend/Technology
        3.3.PESTLE Analysis
        3.4.PORTER'S Five Forces Analysis
        3.5.Technology Roadmap
        3.6.Opportunity Map Analysis
        3.7.Case Studies
        3.8.Opportunity Orbits
        3.9.Pricing Analysis
        3.10.Ecosystem Analysis
        3.11.Supply/Value Chain Analysis
        3.12.Covid-19 & Recession Impact Analysis
        3.13.Product/Brand Comparison
      4.Global Composite AI Market Market Value ((US$ Mn)), Share (%), and Growth Rate (%) Comparison by Offering, 2017-2032
        4.1.Global Composite AI Market Market Analysis by Offering: Introduction
        4.2.Market Size and Forecast by Region
        4.3.Hardware
        4.4.Software
        4.5.Services
      5.Global Composite AI Market Market Value ((US$ Mn)), Share (%), and Growth Rate (%) Comparison by Technique, 2017-2032
        5.1.Global Composite AI Market Market Analysis by Technique: Introduction
        5.2.Market Size and Forecast by Region
        5.3.Data Mining & Machine Learning
        5.4.Data Processing
        5.5.Pattern Recognition
        5.6.Conditioned Monitoring
        5.7.Proactive Mechanism
        5.8.Others
      6.Global Composite AI Market Market Value ((US$ Mn)), Share (%), and Growth Rate (%) Comparison by Application, 2017-2032
        6.1.Global Composite AI Market Market Analysis by Application: Introduction
        6.2.Market Size and Forecast by Region
        6.3.Predictive Maintenance
        6.4.Quality Control
        6.5.Product Design & Development
        6.6.Security & Surveillance
        6.7.Customer Service
      7.Global Composite AI Market Market Value ((US$ Mn)), Share (%), and Growth Rate (%) Comparison by End User, 2017-2032
        7.1.Global Composite AI Market Market Analysis by End User: Introduction
        7.2.Market Size and Forecast by Region
        7.3.BFSI
        7.4.Telecom
        7.5.Healthcare & Lifesciences
        7.6.Retail & E-Commerce
        7.7.Energy & Power
        7.8.Media & Entertainment
        7.9.Government & Defense
        7.10.Transportation & Logistics
        7.11.Manufacturing
        7.12.Others
      10.Global Composite AI Market Market Value ((US$ Mn)), Share (%), and Growth Rate (%) Comparison by Region, 2017-2032
        10.1.North America
          10.1.1.North America Composite AI Market Market: Regional Analysis, 2017-2032
            10.1.1.1.The US
            10.1.1.2.Canada
        10.2.1.Europe
          10.2.1.Europe Composite AI Market Market: Regional Trend Analysis
            10.2.1.1.Germany
            10.2.1.2.France
            10.2.1.3.UK
            10.2.1.4.Russia
            10.2.1.5.Italy
            10.2.1.6.Spain
            10.2.1.7.Nordic
            10.2.1.8.Benelux
            10.2.1.9.Rest of Europe
        10.3.Asia-Pacific
          10.3.1.Asia-Pacific Composite AI Market Market: Regional Analysis, 2017-2032
            10.3.1.1.China
            10.3.1.2.Japan
            10.3.1.3.South Korea
            10.3.1.4.India
            10.3.1.5.ANZ
            10.3.1.6.ASEAN
            10.3.1.7.Rest of Asia-Pacifc
        10.4.Latin America
          10.4.1.Latin America Composite AI Market Market: Regional Analysis, 2017-2032
            10.4.1.1.Brazil
            10.4.1.2.Mexico
            10.4.1.3.Argentina
            10.4.1.4.Colombia
            10.4.1.5.Rest of Latin America
        10.5.Middle East and Africa
          10.5.1.Middle East and Africa Composite AI Market Market: Regional Analysis, 2017-2032
            10.5.1.1.Saudi Arabia
            10.5.1.2.UAE
            10.5.1.3.South Africa
            10.5.1.4.Israel
            10.5.1.5.Egypt
            10.5.1.6.Turkey
            10.5.1.7.Rest of MEA
      11.Global Composite AI Market Market Company Evaluation Matrix, Competitive Landscape, Market Share Analysis, and Company Profiles
        11.1.Market Share Analysis
        11.2.Company Profiles
        11.3.IBM Corp
          11.3.1.Company Overview
          11.3.2.Financial Highlights
          11.3.3.Product Portfolio
          11.3.4.SWOT Analysis
          11.3.5.Key Strategies and Developments
        11.4.SAS
          11.4.1.Company Overview
          11.4.2.Financial Highlights
          11.4.3.Product Portfolio
          11.4.4.SWOT Analysis
          11.4.5.Key Strategies and Developments
        11.5.Microsoft Corp
          11.5.1.Company Overview
          11.5.2.Financial Highlights
          11.5.3.Product Portfolio
          11.5.4.SWOT Analysis
          11.5.5.Key Strategies and Developments
        11.6.Google LLC
          11.6.1.Company Overview
          11.6.2.Financial Highlights
          11.6.3.Product Portfolio
          11.6.4.SWOT Analysis
          11.6.5.Key Strategies and Developments
        11.7.Salesforce Inc
          11.7.1.Company Overview
          11.7.2.Financial Highlights
          11.7.3.Product Portfolio
          11.7.4.SWOT Analysis
          11.7.5.Key Strategies and Developments
        11.8.NVIDIA Corp
          11.8.1.Company Overview
          11.8.2.Financial Highlights
          11.8.3.Product Portfolio
          11.8.4.SWOT Analysis
          11.8.5.Key Strategies and Developments
        11.9.SAP SE
          11.9.1.Company Overview
          11.9.2.Financial Highlights
          11.9.3.Product Portfolio
          11.9.4.SWOT Analysis
          11.9.5.Key Strategies and Developments
        11.10.Intel Corp
          11.10.1.Company Overview
          11.10.2.Financial Highlights
          11.10.3.Product Portfolio
          11.10.4.SWOT Analysis
          11.10.5.Key Strategies and Developments
        11.11.Amazon Web Services (AWS)
          11.11.1.Company Overview
          11.11.2.Financial Highlights
          11.11.3.Product Portfolio
          11.11.4.SWOT Analysis
          11.11.5.Key Strategies and Developments
        11.12.Squirro AG
          11.12.1.Company Overview
          11.12.2.Financial Highlights
          11.12.3.Product Portfolio
          11.12.4.SWOT Analysis
          11.12.5.Key Strategies and Developments
        11.13.Other Key Players
          11.13.1.Company Overview
          11.13.2.Financial Highlights
          11.13.3.Product Portfolio
          11.13.4.SWOT Analysis
          11.13.5.Key Strategies and Developments
      12.Assumptions and Acronyms
      13.Research Methodology
      14.Contact
    If your country is missing in the list, we apologize that we still do not serve in your country.

    ✅ 100% Privacy – Your Information is Safe
    ✅ Secure & Encrypted Form Submission
    If your country is missing in the list, we apologize that we still do not serve in your country.

    ✅ 100% Privacy – Your Information is Safe
    ✅ Secure & Encrypted Form Submission

    Select License Type

    • License
    • Report Price :$
    • TOTAL$
    • Single User License$ 3190
    • Multi-User License$ 4590
    • Corporate License$ 5690
    • Data Set (Excel)$

    • RC-550

    • November-2023
      • ★★★★★
        ★★★★★
      • 74
    Buy Now

    Customization Request

    Quick Contact

    • Chat on Whatsapp
    • USA Flag
      +1 732 369 9777
    • India Flag
      +91 882 677 4855
    • Contact By Email
    Clients We Serve
    Market Research Report Cover

    Recent Report

    • Enterprise Governance, Risk, and Compliance (eGRC) Market
    • Edge AI for Cybersecurity Market
    • Digital Map Market
    • DDI (DNS, DHCP, and IP Address Management) Market
    • Potassium Thiosulfate Fertilizer Market
    • Passwordless Authentication Market
    • Data Center Power Market
    • Data Center Cooling Market
    • Data Centre Rack Market
    • Japan Edge AI Software Market
    Secured Payment Options
      /images/payment.png
    Legal
    • Privacy Policy
    • Refund Policy
    • Frequently Asked Questions
    • Terms and Conditions
    Explore Company
    • About Us
    • Contact Us
    • Trending Reports
    • Latest Reports
    • All Industries
    • How to Order
    Contact Detail
    • 957 Route 33, Suite 12 #308
            Hamilton Square, NJ-08690 USA
    • +1 (123) 456 4562 (International)
    • +1 (732) 629 9444 (International)
    • +91 882 677 4855 (Asia)
    • sales@dimensionmarketresearch.com
    Copyright Dimension Market Research. ©2025 All rights reserved