Market Overview
The Global Artificial Intelligence (AI) in Credit Scoring Market is expected to be valued at
USD 2,252.3 million in 2025 and is further anticipated to reach
USD 16,014.0 million by 2034 at a
CAGR of 24.4%.

The Global Artificial Intelligence (AI) in Credit Scoring Market refers to integrating artificial intelligence (AI) technologies in assessing and determining the creditworthiness of individuals and businesses. Traditional credit scoring methods have long relied on historical financial data and standard algorithms.
However, AI introduces advanced capabilities such as machine learning, natural language processing, and predictive analytics to enhance credit risk assessment accuracy, efficiency, and fairness. This market is a dynamic and fast-evolving segment of the broader financial technology (fintech) landscape, driven by rising demand for more inclusive, transparent, and efficient lending processes across global financial systems.
AI-powered credit scoring platforms leverage vast and diverse data sets that go beyond conventional financial metrics. These systems analyze alternative data sources such as social media activity, mobile phone usage, transaction patterns, utility payments, and other behavioral data to create a more holistic view of a borrower's financial behavior. By doing so, AI models can uncover hidden insights and identify risk patterns that traditional models might overlook.
This has been particularly valuable in emerging markets, where large populations remain underbanked or unbanked and may lack formal credit histories. The adoption of AI in credit scoring offers multiple advantages to both lenders and borrowers.
For lenders, it significantly reduces the time and costs associated with credit evaluations while improving the accuracy of risk predictions. AI models can automate underwriting processes, minimize biases inherent in human decision-making, and continuously learn from new data to refine scoring methodologies. For borrowers, especially those with thin credit files or non-traditional incomes, AI-driven credit scoring opens doors to financial inclusion by enabling access to credit products that were previously out of reach.
The rapid digital transformation of the banking and financial services sector, integrated with the rise of fintech companies, has accelerated the growth of the AI in credit scoring market. Financial institutions are collaborating with AI solution providers to enhance their lending capabilities and gain competitive advantages in the market.

Despite its benefits, the market also faces challenges such as data privacy concerns, regulatory complexities, and the need for transparency in AI algorithms. Financial regulators and policymakers are actively working to develop guidelines and standards that ensure the ethical use of AI in credit assessments while protecting consumer rights. As AI technologies continue to mature, the Global Artificial Intelligence (AI) in credit scoring market is expected to expand significantly, transforming the way creditworthiness is evaluated and contributing to a more inclusive global financial ecosystem.
The US AI in Credit Scoring Market
The US AI in Credit Scoring Market is projected to be valued at USD 757.7 million in 2025. It is further expected to witness subsequent growth in the upcoming period, holding USD 4,836.4 million in 2034 at a CAGR of 22.9%.

In the US, the AI in credit scoring market is witnessing significant traction as financial institutions and fintech companies are adopting artificial intelligence to modernize traditional credit evaluation systems. Historically, US lenders have relied on conventional credit scores such as FICO and VantageScore, which primarily assess an individual's repayment history, credit utilization, and outstanding debts.
However, AI-powered models are reshaping this landscape by incorporating non-traditional data points and advanced analytics, enabling a more detailed understanding of borrower behavior and credit risk. This shift is helping US lenders address limitations in existing models and offer more customized lending solutions.
The US market is also experiencing growing demand for AI-driven credit scoring due to the push for financial inclusion and the need to serve underbanked or thin-file consumers. Millions of Americans lack sufficient credit history to qualify for traditional credit products, creating a large segment of the population that is underserved by legacy credit scoring systems.
AI algorithms can leverage alternative data, including rental payment records, utility bills, gig economy earnings, and even psychometric data, to provide lenders with a more complete risk assessment of such borrowers. This approach is enabling many fintech lenders and neobanks to tap into new customer segments and provide credit access to historically overlooked demographics.
Global Artificial Intelligence (AI) in Credit Scoring Market: Key Takeaways
- Market Value: The Global Artificial Intelligence (AI) in credit scoring market size is expected to reach a value of USD 16,014.0 million by 2034 from a base value of USD 2,252.3 million in 2025 at a CAGR of 24.4%.
- By Component Type Segment Analysis: Software components are poised to consolidate their dominance in the component type segment capturing 60.0% of the total market share in 2025.
- By Application Type Segment Analysis: Personal Credit Scoring applications are expected to maintain their dominance in the application type segment capturing 70.0% of the total market share in 2025.
- By Industry Vertical Type Segment Analysis: BFSI is poised to consolidate its market position in the industry vertical type segment capturing 30.0% of the total market share in 2025.
- Regional Analysis: North America is anticipated to lead the Global Artificial Intelligence (AI) in credit scoring market landscape with 40.0% of total global market revenue in 2025.
- Key Players: Some key players in the Global Artificial Intelligence (AI) in credit scoring market are FICO, Experian, Equifax, TransUnion, Zest AI, Upstart, LenddoEFL, Kabbage (American Express), Scienaptic AI, Affirm, Pagaya, Kreditech, Kabbage, RiskSpan, CreditVidya, Lendio, OakNorth, Deserve, Nova Credit, AI Foundry, and Other Key Players.
Global Artificial Intelligence (AI) in Credit Scoring Market: Use Cases
- Alternative Credit Scoring for the Underbanked and Unbanked: AI-driven credit scoring models can utilize non-traditional and alternative data sources such as utility payments, rental history, mobile phone usage, and social media behavior to assess the creditworthiness of individuals without formal credit histories. This use case is especially valuable in emerging markets and rural areas where access to banking services is limited, helping financial institutions extend credit to previously underserved or unbanked populations.
- Real-Time Credit Decisioning for Digital Lending Platforms: AI enables digital lenders and fintech companies to process vast amounts of applicant data quickly and make real-time lending decisions. By automating risk assessments and incorporating predictive analytics, AI reduces the time taken for loan approvals, minimizes operational costs, and enhances the customer experience by providing faster, data-backed credit decisions through online and mobile platforms.
- Fraud Detection and Risk Mitigation in Lending: AI models can detect unusual patterns, anomalies, and potential fraud risks by continuously monitoring borrower behavior and transaction data. This helps financial institutions identify fraudulent applications or high-risk borrowers early in the credit lifecycle, reducing non-performing assets (NPAs) and financial losses while improving the overall security of credit portfolios.
- Dynamic Credit Line Adjustments and Personalized Credit Offers: With AI, lenders can provide dynamic credit products designed for individual borrower profiles. AI algorithms can continuously evaluate a customer’s financial behavior and market conditions to offer proactive credit line adjustments or personalized loan offers. This helps improve borrower engagement and loyalty while ensuring that credit offerings are aligned with each borrower's evolving financial situation.
Global Artificial Intelligence (AI) in Credit Scoring Market: Stats & Facts
According to the World Bank
- According to the World Bank’s "Doing Business" report, which assesses regulations affecting business operations across economies, it was found that in 96 countries, the largest credit bureau operating in each region plays a central role in providing credit scoring services to financial institutions and consumers. These credit bureaus, such as Experian, Equifax, TransUnion, and local equivalents in different regions, serve as the primary providers of credit information, offering credit scores based on consumers' credit histories and financial behavior. The World Bank highlights that among these 96 economies, 62 credit bureaus have made credit scores and their explanations accessible online, ensuring transparency and supporting informed decision-making for both lenders and borrowers.
- One-third of economies with credit bureaus introduced them in the past decade.
- AI applications have accelerated in recent years, supported by an evolution in machine learning and improvements in computing power, data storage, and communications networks.
- AI applications have the potential to overcome obstacles that prevent the delivery of financial services to many consumers.
- Responsible adoption of AI by firms relies on competitive market settings and continued investment in necessary infrastructure.
- AI technologies enable financial institutions to tap into unconventional data sources to generate alternative credit scores.
- AI applications have the potential to reduce the cost of serving smallholder farmers across the agriculture ecosystem.
According to the Basel Committee of Banking Supervision
- Developments in artificial intelligence and machine learning have raised important questions about their potential impact on banks, banking, and supervision.
- AI applications have been used by financial institutions for various purposes, including operational efficiency, risk management, and customer experience in banking and insurance.
- AI helps banks mitigate the typical countercyclical effects of relationship lending on firms' credit supply, as well as on their investment and employment decisions.
According to the International Monetary Fund (IMF)
- Machine learning reduces banks' losses on delinquent customers by up to 25%.
- Recent advances in digital technology and big data have allowed FinTech lending to emerge as a potentially promising solution to reduce the cost of credit and increase financial inclusion.
- Machine learning methods lie at the heart of FinTech credit, offering potential strengths and weaknesses in credit risk analysis.
- FinTech lending has emerged as a potentially promising solution to reduce the cost of credit and increase financial inclusion.
- Machine learning methods have remained largely a black box for the nontechnical audience, presenting challenges in credit risk analysis.
According to the UBS Evidence Lab report
- 75% of respondents at banks with over USD 100 billion in assets say they are currently implementing AI strategies compared to 46% at banks with less than USD 100 billion in assets.
According to a joint research conducted by the National Business Research Institute and Narrative Science
- About 32% of financial service providers in India are already using AI technologies such as predictive analytics and voice recognition.
- Banks including SBI, Bank of Baroda, HDFC, ICICI, Yes Bank, and others are deploying AI to streamline regular processes.
- 83% of Indian bankers, higher than the global average of 79%, believe AI will work alongside humans within the next two years.
- 77% of Indian bankers agree on the need to effectively develop and implement AI tools in banking services.
Global Artificial Intelligence (AI) in Credit Scoring Market: Market Dynamic
Global Artificial Intelligence (AI) in Credit Scoring Market: Driving Factors
Growing Demand for Financial Inclusion across Emerging Economies
Major populations in regions like Africa, Southeast Asia, and Latin America remain underbanked or unbanked due to limited access to traditional financial services and a lack of formal credit histories. Traditional credit scoring models, which heavily depend on historical credit bureau data, often exclude millions of potential borrowers who have informal incomes or alternative financial behaviors.
AI technologies enable financial institutions to tap into unconventional data sources, such as utility payments, mobile money transactions, and behavioral data, to generate alternative credit scores. This allows lenders to confidently extend credit services to new customer segments, driving economic participation and fostering entrepreneurship.
Rapid Digital Transformation of the Banking and Lending Ecosystem
AI enables banks, fintech companies, and credit unions to streamline loan origination, reduce operational costs, and improve decision-making accuracy. Furthermore, AI-powered models can be trained to continuously adapt to evolving borrower behaviors and economic conditions, making them more resilient compared to static, rule-based legacy systems.
The surge in online and mobile banking, combined with open banking initiatives and API-based data sharing, provides lenders with access to richer and more diverse datasets. This facilitates the deployment of AI-driven credit scoring platforms that can offer real-time credit decisioning, better customer profiling, and advanced risk mitigation strategies, ultimately reshaping the competitive landscape of the global lending market.
Global Artificial Intelligence (AI) in Credit Scoring Market: Restraints
Data Privacy and Security Concerns
AI models rely on vast amounts of both traditional and alternative data to assess creditworthiness, often including personal, financial, and behavioral data gathered from non-traditional sources like social media, mobile devices, and online transactions. The aggregation and processing of such diverse data raise questions about consent, data ownership, and the potential misuse of consumer information. With strict data protection regulations such as the General Data Protection Regulation (GDPR) in Europe and similar frameworks emerging globally, lenders and AI solution providers must navigate complex compliance requirements.
Lack of Transparency and Explainability in AI Models
In the highly regulated financial services industry, lenders must be able to justify credit decisions to both customers and regulators. If borrowers are denied credit based on AI-generated scores, they are entitled to clear explanations under consumer protection laws such as the Equal Credit Opportunity Act (ECOA) in the U.S. and similar laws globally.
The lack of interpretable AI models can therefore hinder adoption, as financial institutions may be reluctant to implement systems that cannot provide transparent, audit-friendly reasoning behind credit decisions. This creates a gap between AI’s technical capabilities and regulatory or ethical expectations in credit underwriting.
Global Artificial Intelligence (AI) in Credit Scoring Market: Opportunities
Expansion of AI-Driven Credit Scoring into New Industry Verticals
Companies in these sectors are exploring AI-based credit scoring to evaluate customer risk for various applications, such as offering buy-now-pay-later (BNPL) services, insurance premium pricing, or device financing plans.
By adopting AI credit models, these non-financial players can make more informed decisions about offering credit-based products to consumers, reduce default rates, and create customized financial solutions based on granular customer insights. This cross-industry adoption is expected to significantly broaden the market base and open new revenue streams for AI solution providers.
Integration of Blockchain and AI for Enhanced Credit Scoring Solutions
Blockchain’s decentralized and immutable ledger system can provide data integrity, transparency, and security when combined with AI models that process vast amounts of personal and financial information. By leveraging blockchain, lenders can create secure, tamper-proof credit histories that feed into AI algorithms for more accurate and trustworthy credit scoring.
Additionally, smart contracts on blockchain platforms can automate credit decision-making and loan disbursement processes, enhancing efficiency and trust in lending ecosystems. This integration is gaining traction, especially in peer-to-peer lending networks and decentralized finance (DeFi) platforms, where trustless transactions are critical, positioning it as a future growth driver for the AI credit scoring market.
Global Artificial Intelligence (AI) in Credit Scoring Market: Trends
Rise of Explainable AI (XAI) in Credit Scoring Models
Financial institutions and fintech companies are prioritizing AI models that not only deliver accurate credit assessments but also provide clear, human-understandable explanations behind each decision. As regulatory bodies globally demand greater transparency and fairness in automated credit decisions, XAI is becoming a key differentiator in the market.
Lenders are adopting AI platforms that allow for granular insights into why a loan was approved or declined, ensuring compliance with consumer protection laws and reducing the risk of algorithmic bias. This trend is also improving customer trust, as borrowers are more likely to accept AI-driven decisions when they can see the rationale behind them.
Adoption of Hybrid Credit Scoring Models Combining Traditional and Alternative Data
Rather than fully replacing legacy credit scoring systems, many institutions are now blending AI-driven insights with traditional models such as FICO or VantageScore. By integrating alternative data like real-time transaction patterns, rental histories, and behavioral analytics with established credit bureau information, lenders are achieving more comprehensive and balanced risk assessments.
This hybrid approach is helping financial institutions improve credit access for underserved populations while maintaining the reliability of proven traditional frameworks. The trend is especially prominent in markets where regulators encourage financial inclusion but still require lenders to adhere to baseline industry standards.
Global Artificial Intelligence (AI) in Credit Scoring Market: Research Scope and Analysis
By Component Analysis
The software component is expected to firmly establish its dominance in the AI in credit scoring market in 2025, accounting for approximately 60.0% of the total market share. This significant market share is driven by the growing demand for advanced AI-powered platforms that automate credit scoring processes, analyze vast and complex datasets, and deliver real-time risk assessments. Financial institutions, fintech companies, and alternative lenders are investing in AI-driven software solutions to streamline their underwriting workflows, reduce manual intervention, and improve the accuracy of credit decision-making.

These AI platforms offer predictive modeling, behavioral analytics, and dynamic risk scoring capabilities, which allow lenders to tailor credit offerings to individual borrowers, enhancing both efficiency and profitability. Additionally, the widespread adoption of cloud-based AI software has made credit-scoring solutions more accessible and scalable, contributing further to this segment’s growth.
Services also play a critical role in supporting and maximizing the value of AI-powered credit scoring systems. The services segment includes consulting, implementation, system integration, training, and maintenance services provided by AI solution vendors and third-party integrators.
These services ensure that financial institutions can deploy AI solutions effectively, tailor them to specific business models, and achieve optimal performance. For many lenders, especially traditional banks with legacy infrastructure, the transition to AI-based credit scoring requires expert guidance on data migration, algorithm customization, regulatory compliance, and system interoperability.
Service providers assist in aligning AI credit scoring tools with institutional risk frameworks and market-specific regulatory requirements, reducing operational risks. Additionally, ongoing support and system upgrades are crucial to keep AI models updated with new data trends, emerging risks, and evolving lending criteria.
By Application Analysis
Personal credit scoring applications are projected to maintain a commanding position within the application type segment, capturing 70.0% of the total market share in 2025. This dominance is primarily fueled by the rapid rise in consumer lending activities globally, integrated with the digital transformation of financial services.
As millions of individuals seek personal loans, credit cards, buy-now-pay-later (BNPL) services, and other consumer credit products, lenders are turning to AI-powered personal credit scoring tools to enhance credit risk evaluations.
AI enables lenders to go beyond conventional credit bureau data by incorporating alternative data points such as utility payments, mobile wallet usage, online purchasing behaviors, and even social media activity. This allows financial institutions and fintech companies to serve a broader spectrum of borrowers, including thin-file customers and those previously excluded from the traditional credit system. The dominance of personal credit scoring applications is also attributed to the consumer shift toward digital lending platforms.
On the other hand, corporate credit scoring is emerging as a specialized yet essential segment within the broader AI credit scoring market. While it currently holds a smaller share compared to personal credit scoring, corporate credit scoring is critical for evaluating the creditworthiness of businesses, particularly small and medium-sized enterprises (SMEs) and startups.
Traditionally, corporate credit scoring has relied heavily on financial statements, balance sheets, cash flow records, and credit bureau reports. However, AI is reshaping this process by allowing lenders to incorporate real-time transactional data, industry trends, supply chain dynamics, and even ESG (Environmental, Social, and Governance) performance indicators to assess corporate credit risk more holistically.
By Industry Vertical Analysis
The BFSI (Banking, Financial Services, and Insurance) sector is set to solidify its leadership position in the AI in credit-scoring market, capturing 30.0% of the total market share in 2025. This dominance is largely driven by the sector's urgent need for advanced credit risk management tools amid rising loan volumes, evolving customer expectations, and a rising competitive lending environment.
Within the BFSI industry, traditional banks, credit unions, insurance companies, and fintech players are leveraging AI-powered credit scoring to enhance underwriting accuracy, reduce non-performing assets, and deliver faster, more personalized lending solutions. AI enables BFSI institutions to process vast amounts of structured and unstructured data from diverse sources including credit bureaus, transaction records, behavioral data, and macroeconomic indicators to generate highly accurate and dynamic risk profiles for individual and corporate borrowers.
The digital transformation across the BFSI sector has further accelerated the integration of AI into credit scoring processes. With customers demanding frictionless digital lending experiences, financial institutions are adopting AI models that provide real-time credit decisions and minimize manual underwriting bottlenecks. The retail industry is also emerging as a promising vertical for AI-powered credit scoring applications, albeit with a different set of use cases compared to BFSI.
The rise of embedded finance and consumer credit offerings such as buy-now-pay-later (BNPL), point-of-sale (POS) financing, and private-label credit cards has prompted many large retailers to integrate AI-driven credit scoring models directly into their checkout and customer engagement processes. Retailers are acting as lenders, offering short-term credit to boost purchasing power, improve customer retention, and drive higher sales volumes.
AI plays a crucial role in enabling retailers to assess customer creditworthiness in real time by analyzing alternative data such as shopping behavior, purchase frequency, customer loyalty program participation, and even online browsing history.
The AI in Credit Scoring Market Report is segmented on the basis of the following:
By Component
By Application
- Personal Credit Scoring
- Corporate Credit Scoring
By Industry Vertical
- BFSI
- Retail
- Healthcare
- Telecommunications
- Utilities
- Real Estate
Global Artificial Intelligence (AI) in Credit Scoring Market: Regional Analysis
Region with the Largest Revenue Share
North America is projected to dominate the Global Artificial Intelligence (AI) in credit scoring market, securing
40.0% of the total global market revenue by 2025, fueled by a combination of advanced digital infrastructure, early AI adoption, and a highly competitive financial services landscape.

The region, led by the United States and Canada, has been at the forefront of integrating artificial intelligence across banking, fintech, and alternative lending platforms. In North America, established financial institutions such as major banks, credit unions, and insurance providers, as well as disruptive fintech startups, are heavily investing in AI-powered credit scoring systems to enhance risk management, improve customer acquisition, and streamline loan origination processes.
The U.S., in particular, serves as the epicenter for AI innovation in credit scoring due to its mature credit ecosystem, large unbanked and underbanked population segments, and the presence of leading AI solution providers like FICO, Upstart, Zest AI, and Experian. These companies are pushing the boundaries of AI to integrate alternative data sources such as social media activity, rental payments, and even psychometric assessments into risk modeling.
Region with the Highest CAGR
The Asia Pacific (APAC) region is set to register the highest CAGR in the Global Artificial Intelligence (AI) in credit scoring market through 2025, driven by a confluence of factors including rapid digitalization, expanding financial inclusion initiatives, and the explosive growth of fintech ecosystems across emerging economies.
Countries such as China, India, Indonesia, Vietnam, and the Philippines are witnessing a surge in alternative lending platforms and mobile-first banking solutions aimed at catering to vast unbanked and underbanked populations. In these markets, traditional credit infrastructure is often underdeveloped or fragmented, creating fertile ground for AI-driven credit scoring models that leverage alternative data sources like mobile transactions, e-wallet usage, social media activity, and even telecom records to assess borrower creditworthiness.
The region's rapid economic growth, integrated with a tech-savvy population, is fueling demand for instant, digital-first lending services, making AI-based credit scoring tools indispensable for banks, fintech startups, and micro-lenders seeking to capture new market segments.
By Region
North America
Europe
- Germany
- The U.K.
- France
- Italy
- Russia
- Spain
- Benelux
- Nordic
- Rest of Europe
Asia-Pacific
- China
- Japan
- South Korea
- India
- ANZ
- ASEAN
- Rest of Asia-Pacific
Latin America
- Brazil
- Mexico
- Argentina
- Colombia
- Rest of Latin America
Middle East & Africa
- Saudi Arabia
- UAE
- South Africa
- Israel
- Egypt
- Rest of MEA
Global Artificial Intelligence (AI) in Credit Scoring Market: Competitive Landscape
The global competitive landscape of AI in the credit scoring market is highly dynamic and characterized by a blend of established multinational corporations, niche AI startups, fintech disruptors, and technology service providers, all vying for market share. This competitive environment is shaped by rapid advancements in artificial intelligence, machine learning, and big data analytics, as well as the ongoing digital transformation of the financial services sector. Companies are racing to deliver innovative AI-driven credit scoring solutions that not only improve the accuracy and speed of credit decision-making but also enhance regulatory compliance and customer experience.
Large credit bureaus and financial software giants, such as FICO, Experian, Equifax, and TransUnion, continue to dominate the landscape with their well-established AI-powered credit scoring platforms. These firms leverage decades of proprietary credit data, vast customer bases, and advanced AI algorithms to provide highly trusted risk assessment solutions for banks, insurers, and lenders globally. Their competitive edge lies in their ability to integrate AI into legacy credit models like FICO Score and VantageScore while meeting stringent regulatory and data privacy standards in mature markets like North America and Europe.
Some of the prominent players in the Global Artificial Intelligence (AI) in Credit Scoring are:
- FICO
- Experian
- Equifax
- TransUnion
- Zest AI
- Upstart
- LenddoEFL
- Kabbage (American Express)
- Scienaptic AI
- Affirm
- Pagaya
- Kreditech
- Kabbage
- RiskSpan
- CreditVidya
- Lendio
- OakNorth
- Deserve
- Nova Credit
- AI Foundry
- Other Key Players
Global Artificial Intelligence (AI) in Credit Scoring Market: Recent Developments
- December 2024: BlackRock acquired HPS Investment Partners, a significant move into the private credit arena, enhancing BlackRock's AI-driven credit assessment capabilities.
- October 2024: Intuit completed its acquisition of Mailchimp, integrating AI-driven marketing automation with its financial software suite, including credit scoring services.
- August 2024: Mastercard announced the acquisition of Recorded Future, a cybersecurity firm specializing in AI, to bolster its fraud detection and credit risk assessment services.
- June 2024: FICO acquired EZMCOM, an AI-based digital identity provider, to enhance its credit scoring models with advanced authentication technologies.
- April 2024: Experian purchased ClearScore, a UK-based credit monitoring service, to integrate AI-driven credit scoring tools into its global offerings.
- February 2024: Equifax acquired Kount, an AI-driven fraud prevention company, to strengthen its credit risk management solutions.
- December 2023: TransUnion completed the acquisition of Signal Analytics, aiming to enhance its AI capabilities in credit scoring and consumer insights.
- October 2023: Upstart acquired Prodigy, an automotive retail software provider, to expand its AI-based credit scoring into auto lending.
Report Details
Report Characteristics |
Market Size (2025) |
USD 2,252.3 Mn |
Forecast Value (2034) |
USD 16,014.0 Mn |
CAGR (2025-2034) |
24.4% |
Historical Data |
2019 – 2024 |
The US Market Size (2025) |
USD 757.7 Mn |
Forecast Data |
2025 – 2033 |
Base Year |
2024 |
Estimate Year |
2025 |
Report Coverage |
Market Revenue Estimation, Market Dynamics, Competitive Landscape, Growth Factors and etc. |
Segments Covered |
By Component (Software and Services), By Application (Personal Credit Scoring and Corporate Credit Scoring), By Industry Vertical (BFSI, Retail, Healthcare, Telecommunications, Utilities, and Real Estate) |
Regional Coverage |
North America – The US and Canada; Europe – Germany, The UK, France, Russia, Spain, Italy, Benelux, Nordic, & Rest of Europe; Asia- Pacific– China, Japan, South Korea, India, ANZ, ASEAN, Rest of APAC; Latin America – Brazil, Mexico, Argentina, Colombia, Rest of Latin America; Middle East & Africa – Saudi Arabia, UAE, South Africa, Turkey, Egypt, Israel, & Rest of MEA
|
Prominent Players |
FICO, Experian, Equifax, TransUnion, Zest AI, Upstart, LenddoEFL, Kabbage (American Express), Scienaptic AI, Affirm, Pagaya, Kreditech, Kabbage, RiskSpan, CreditVidya, Lendio, OakNorth, Deserve, Nova Credit, AI Foundry, and Other Key Players |
Purchase Options |
We have three licenses to opt for: Single User License (Limited to 1 user), Multi-User License (Up to 5 Users) and Corporate Use License (Unlimited User) along with free report customization equivalent to 0 analyst working days, 3 analysts working days and 5 analysts working days respectively. |
Frequently Asked Questions
The Global Artificial Intelligence (AI) in credit scoring market size is estimated to have a value of USD 2,252.3 million in 2025 and is expected to reach USD 16,014.0 million by the end of 2034.
The US AI in credit scoring market is projected to be valued at USD 757.7 million in 2025. It is expected to witness subsequent growth in the upcoming period as it holds USD 4,836.4 million in 2034 at a CAGR of 22.9%.
North America is expected to have the largest market share in the Global Artificial Intelligence (AI) in credit scoring market with a share of about 40.0% in 2025.
Some of the major key players in the Global Artificial Intelligence (AI) in credit scoring market are FICO, Experian, Equifax, TransUnion, Zest AI, Upstart, LenddoEFL, Kabbage (American Express), Scienaptic AI, Affirm, Pagaya, Kreditech, Kabbage, RiskSpan, CreditVidya, Lendio, OakNorth, Deserve, Nova Credit, AI Foundry, and many others.
The market is growing at a CAGR of 24.4 percent over the forecasted period.